Copied to
clipboard

G = C92⋊S3order 486 = 2·35

1st semidirect product of C92 and S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C921S3, C922C31C2, He3⋊S31C3, He3⋊C3.1C6, C32.1(C32⋊C6), C3.5(He3.2C6), (C3×C9).17(C3×S3), SmallGroup(486,36)

Series: Derived Chief Lower central Upper central

C1C32He3⋊C3 — C92⋊S3
C1C3C32C3×C9He3⋊C3C922C3 — C92⋊S3
He3⋊C3 — C92⋊S3
C1

Generators and relations for C92⋊S3
 G = < a,b,c,d | a9=b9=c3=d2=1, ab=ba, cac-1=ab-1, ad=da, cbc-1=a3b7, dbd=a3b-1, dcd=c-1 >

27C2
3C3
27C3
54C3
9S3
27C6
81S3
3C9
3C9
6C9
9C32
18C32
3D9
9C3⋊S3
9C3×S3
27C18
3He3
3C3×C9
6He3
3C3×D9
9S3×C9
9C32⋊C6
2He3⋊C3
3C9×D9

Permutation representations of C92⋊S3
On 27 points - transitive group 27T185
Generators in S27
(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 8 5 2 9 6 3 7 4)(10 12 14 16 18 11 13 15 17)(19 20 21 22 23 24 25 26 27)
(1 10 21)(2 16 24)(3 13 27)(4 11 20)(5 17 23)(6 14 26)(7 12 19)(8 18 22)(9 15 25)
(2 3)(4 8)(5 7)(6 9)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 19)(18 20)

G:=sub<Sym(27)| (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,8,5,2,9,6,3,7,4)(10,12,14,16,18,11,13,15,17)(19,20,21,22,23,24,25,26,27), (1,10,21)(2,16,24)(3,13,27)(4,11,20)(5,17,23)(6,14,26)(7,12,19)(8,18,22)(9,15,25), (2,3)(4,8)(5,7)(6,9)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,19)(18,20)>;

G:=Group( (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,8,5,2,9,6,3,7,4)(10,12,14,16,18,11,13,15,17)(19,20,21,22,23,24,25,26,27), (1,10,21)(2,16,24)(3,13,27)(4,11,20)(5,17,23)(6,14,26)(7,12,19)(8,18,22)(9,15,25), (2,3)(4,8)(5,7)(6,9)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,19)(18,20) );

G=PermutationGroup([[(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,8,5,2,9,6,3,7,4),(10,12,14,16,18,11,13,15,17),(19,20,21,22,23,24,25,26,27)], [(1,10,21),(2,16,24),(3,13,27),(4,11,20),(5,17,23),(6,14,26),(7,12,19),(8,18,22),(9,15,25)], [(2,3),(4,8),(5,7),(6,9),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,19),(18,20)]])

G:=TransitiveGroup(27,185);

31 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B9A···9F9G···9O18A···18F
order12333333669···99···918···18
size12723354545427273···36···627···27

31 irreducible representations

dim1111223666
type+++++
imageC1C2C3C6S3C3×S3He3.2C6C32⋊C6C92⋊S3C92⋊S3
kernelC92⋊S3C922C3He3⋊S3He3⋊C3C92C3×C9C3C32C1C1
# reps11221212136

Matrix representation of C92⋊S3 in GL6(𝔽19)

100000
010000
002500
0014700
0000714
000052
,
7140000
520000
0017700
0012500
0000714
000052
,
000010
000001
100000
010000
001000
000100
,
010000
100000
000001
000010
000100
001000

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,14,0,0,0,0,5,7,0,0,0,0,0,0,7,5,0,0,0,0,14,2],[7,5,0,0,0,0,14,2,0,0,0,0,0,0,17,12,0,0,0,0,7,5,0,0,0,0,0,0,7,5,0,0,0,0,14,2],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;

C92⋊S3 in GAP, Magma, Sage, TeX

C_9^2\rtimes S_3
% in TeX

G:=Group("C9^2:S3");
// GroupNames label

G:=SmallGroup(486,36);
// by ID

G=gap.SmallGroup(486,36);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,218,224,6051,951,453,1096,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^9=c^3=d^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,c*b*c^-1=a^3*b^7,d*b*d=a^3*b^-1,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C92⋊S3 in TeX

׿
×
𝔽